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Abstract

We introduce a new, efficient, principled and
backpropagation-compatible algorithm for learn-
ing a probability distribution on the weights of
a neural network, called Bayes by Backprop. It
regularises the weights by minimising a com-
pression cost, known as the variational free en-
ergy or the expected lower bound on the marginal
likelihood. We show that this principled kind
of regularisation yields comparable performance
to dropout on MNIST classification. We then
demonstrate how the learnt uncertainty in the
weights can be used to improve generalisation
in non-linear regression problems, and how this
weight uncertainty can be used to drive the
exploration-exploitation trade-off in reinforce-
ment learning.

1. Introduction

Plain feedforward neural networks are prone to overfit-
ting. When applied to supervised or reinforcement learn-
ing problems these networks are also often incapable of
correctly assessing the uncertainty in the training data and
so make overly confident decisions about the correct class,
prediction or action. We shall address both of these con-
cerns by using variational Bayesian learning to introduce
uncertainty in the weights of the network. We call our al-
gorithm Bayes by Backprop. We suggest at least three mo-
tivations for introducing uncertainty on the weights: 1) reg-
ularisation via a compression cost on the weights, 2) richer
representations and predictions from cheap model averag-
ing, and 3) exploration in simple reinforcement learning
problems such as contextual bandits.

Various regularisation schemes have been developed to pre-
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vent overfitting in neural networks such as early stopping,
weight decay, and dropout (Hinton et al., 2012). In this
work, we introduce an efficient, principled algorithm for
regularisation built upon Bayesian inference on the weights
of the network (MacKay, 1992; Buntine and Weigend,
1991; MacKay, 1995). This leads to a simple approxi-
mate learning algorithm similar to backpropagation (Le-
Cun, 1985; Rumelhart et al., 1988). We shall demonstrate
how this uncertainty can improve predictive performance
in regression problems by expressing uncertainty in regions
with little or no data, how this uncertainty can lead to more
systematic exploration than e-greedy in contextual bandit
tasks.

All weights in our neural networks are represented by prob-
ability distributions over possible values, rather than having
a single fixed value as is the norm (see Figure 1). Learnt
representations and computations must therefore be robust
under perturbation of the weights, but the amount of per-
turbation each weight exhibits is also learnt in a way that
coherently explains variability in the training data. Thus
instead of training a single network, the proposed method
trains an ensemble of networks, where each network has its
weights drawn from a shared, learnt probability distribu-
tion. Unlike other ensemble methods, our method typically
only doubles the number of parameters yet trains an infi-
nite ensemble using unbiased Monte Carlo estimates of the
gradients.

In general, exact Bayesian inference on the weights of a
neural network is intractable as the number of parameters
is very large and the functional form of a neural network
does not lend itself to exact integration. Instead we take a
variational approximation to exact Bayesian updates. We
build upon the work of Graves (2011), who in turn built
upon the work of Hinton and Van Camp (1993). In con-
trast to this previous work, we show how the gradients
of Graves (2011) can be made unbiased and further how
this method can be used with non-Gaussian priors. Con-
sequently, Bayes by Backprop attains performance compa-
rable to that of dropout (Hinton et al., 2012). Our method
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Figure 1. Left: each weight has a fixed value, as provided by clas-
sical backpropagation. Right: each weight is assigned a distribu-
tion, as provided by Bayes by Backprop.

is related to recent methods in deep, generative modelling
(Kingma and Welling, 2014; Rezende et al., 2014; Gregor
et al., 2014), where variational inference has been applied
to stochastic hidden units of an autoencoder. Whilst the
number of stochastic hidden units might be in the order of
thousands, the number of weights in a neural network is
easily two orders of magnitude larger, making the optimisa-
tion problem much larger scale. Uncertainty in the hidden
units allows the expression of uncertainty about a particular
observation, uncertainty in the weights is complementary
in that it captures uncertainty about which neural network
is appropriate, leading to regularisation of the weights and
model averaging.

This uncertainty can be used to drive exploration in contex-
tual bandit problems using Thompson sampling (Thomp-
son, 1933; Chapelle and Li, 2011; Agrawal and Goyal,
2012; May et al., 2012). Weights with greater uncertainty
introduce more variability into the decisions made by the
network, leading naturally to exploration. As more data are
observed, the uncertainty can decrease, allowing the deci-
sions made by the network to become more deterministic
as the environment is better understood.

The remainder of the paper is organised as follows: Sec-
tion 2 introduces notation and standard learning in neural
networks, Section 3 describes variational Bayesian learn-
ing for neural networks and our contributions, Section 4
describes the application to contextual bandit problems,
whilst Section 5 contains empirical results on a classifica-
tion, a regression and a bandit problem. We conclude with
a brief discussion in Section 6.

2. Point Estimates of Neural Networks

We view a neural network as a probabilistic model
P(y|x,w): given an input x € R? a neural network as-
signs a probability to each possible output y € ), using
the set of parameters or weights w. For classification, ) is
aset of classes and P(y|x, w) is a categorical distribution —
this corresponds to the cross-entropy or softmax loss, when

the parameters of the categorical distribution are passed
through the exponential function then re-normalised. For
regression ) is R and P(y|x, w) is a Gaussian distribution
— this corresponds to a squared loss.

Inputs x are mapped onto the parameters of a distribu-
tion on ) by several successive layers of linear transforma-
tion (given by w) interleaved with element-wise non-linear
transforms.

The weights can be learnt by maximum likelihood estima-
tion (MLE): given a set of training examples D = (X;, ¥ ):»
the MLE weights wMLE are given by:

wMLE — arg maxlog P(D|w)

= arg max Z log P(yi|xi, w).

This is typically achieved by gradient descent (e.g., back-
propagation), where we assume that log P(D|w) is differ-
entiable in w.

Regularisation can be introduced by placing a prior upon
the weights w and finding the maximum a posteriori
(MAP) weights wMAP:

wMAP — arg max log P(w|D)

= arg max log P(D|w) + log P(w).

If w are given a Gaussian prior, this yields L2 regularisa-
tion (or weight decay). If w are given a Laplace prior, then
L1 regularisation is recovered.

3. Being Bayesian by Backpropagation

Bayesian inference for neural networks calculates the pos-
terior distribution of the weights given the training data,
P(w|D). This distribution answers predictive queries
about unseen data by taking expectations: the predictive
distribution of an unknown label y of a test data item X,
is given by P(y|X) = Ep(w|p)[P(¥|%,w)]. Each pos-
sible configuration of the weights, weighted according to
the posterior distribution, makes a prediction about the un-
known label given the test data item x. Thus taking an
expectation under the posterior distribution on weights is
equivalent to using an ensemble of an uncountably infi-
nite number of neural networks. Unfortunately, this is in-
tractable for neural networks of any practical size.

Previously Hinton and Van Camp (1993) and Graves
(2011) suggested finding a variational approximation to the
Bayesian posterior distribution on the weights. Variational
learning finds the parameters 6 of a distribution on the
weights ¢(w|6) that minimises the Kullback-Leibler (KL)
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divergence with the true Bayesian posterior on the weights:

0" = axg min KL[q(w|6) || P(w]|D)]

= argmein/ (w|0) log P(gl(‘%w)d

= arg IneinKL [q(w|9) || P(W)] -

The resulting cost function is variously known as the varia-
tional free energy (Neal and Hinton, 1998; Yedidia et al.,
2000; Friston et al., 2007) or the expected lower bound
(Saul et al., 1996; Neal and Hinton, 1998; Jaakkola and
Jordan, 2000). For simplicity we shall denote it as

F(D,0) = KL[g(w|0) || P(w)]

— Eq(wlo) [log P(D|w)]. (1)

The cost function of (1) is a sum of a data-dependent part,
which we shall refer to as the likelihood cost, and a prior-
dependent part, which we shall refer to as the complexity
cost. The cost function embodies a trade-off between satis-
fying the complexity of the data D and satisfying the sim-
plicity prior P(w). (1) is also readily given an information
theoretic interpretation as a minimum description length
cost (Hinton and Van Camp, 1993; Graves, 2011). Exactly
minimising this cost naively is computationally prohibitive.
Instead gradient descent and various approximations are
used.

3.1. Unbiased Monte Carlo gradients

Under certain conditions, the derivative of an expectation
can be expressed as the expectation of a derivative:

Proposition 1. Let ¢ be a random variable having a prob-
ability density given by q(¢) and let w = t(0,¢) where
t(0,¢) is a deterministic function. Suppose further that
the marginal probability density of w, ¢(w|0), is such that
q(e)de = q(w|0)dw. Then for a function f with deriva-
tives in W:

0 0 ,0) 0 B .0
7 Eawio) [ (w,0)] = Eq(q [JEVVVV)JOV N %

Proof.

s, 0)] = o [ . 0)q(wio)aw

— 4 [ 1o 0uoae

0f(w.0) 0w 0f(w,0)

:]Eq“){ ow 00 90

O

Eq(wio) [log P(D|w)] .

The deterministic function ¢(6, €) transforms a sample of
parameter-free noise € and the variational posterior param-
eters 6 into a sample from the variational posterior. Below
we shall see how this transform works in practice for the
Gaussian case.

We apply Proposition 1 to the optimisation problem in
(1): let f(w,0) = logq(w|0) — log P(w)P(D|w). Us-
ing Monte Carlo sampling to evaluate the expectations,
a backpropagation-like (LeCun, 1985; Rumelhart et al.,
1988) algorithm is obtained for variational Bayesian infer-
ence in neural networks — Bayes by Backprop — which uses
unbiased estimates of gradients of the cost in (1) to learn a
distribution over the weights of a neural network.

Proposition 1 is a generalisation of the Gaussian re-
parameterisation trick (Opper and Archambeau, 20009;
Kingma and Welling, 2014; Rezende et al., 2014) used for
latent variable models, applied to Bayesian learning of neu-
ral networks. Our work differs from this previous work in
several significant ways. Bayes by Backprop operates on
weights (of which there are a great many), whilst most pre-
vious work applies this method to learning distributions on
stochastic hidden units (of which there are far fewer than
the number of weights). Titsias and Lazaro-Gredilla (2014)
considered a large-scale logistic regression task. Unlike
previous work, we do not use the closed form of the com-
plexity cost (or entropic part): not requiring a closed form
of the complexity cost allows many more combinations of
prior and variational posterior families. Indeed this scheme
is also simple to implement and allows prior/posterior com-
binations to be interchanged. We approximate the exact
cost (1) as:

— log P(w")

Zlogq w®) |9)
—log P(DIw™) (2)

where w(%) denotes the ith Monte Carlo sample drawn from
the variational posterior ¢(w(*|@). Note that every term of
this approximate cost depends upon the particular weights
drawn from the variational posterior: this is an instance of
a variance reduction technique known as common random
numbers (Owen, 2013). In previous work, where a closed
form complexity cost or closed form entropy term are used,
part of the cost is sensitive to particular draws from the
posterior, whilst the closed form part is oblivious. Since
each additive term in the approximate cost in (2) uses the
same weight samples, the gradients of (2) are only affected
by the parts of the posterior distribution characterised by
the weight samples. In practice, we did not find this to
perform better than using a closed form KL (where it could
be computed), but we did not find it to perform worse. In
our experiments, we found that a prior without an easy-to-
compute closed form complexity cost performed best.
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3.2. Gaussian variational posterior

Suppose that the variational posterior is a diagonal Gaus-
sian distribution, then a sample of the weights w can be
obtained by sampling a unit Gaussian, shifting it by a mean
1 and scaling by a standard deviation o. We parameterise
the standard deviation pointwise as o = log(1 + exp(p))
and so o is always non-negative. The variational posterior
parameters are § = (u, p). Thus the transform from a sam-
ple of parameter-free noise and the variational posterior pa-
rameters that yields a posterior sample of the weights w is:
w = t(0,e) = p + log(1 + exp(p)) o € where o is point-
wise multiplication. Each step of optimisation proceeds as
follows:

Sample € ~ N (0, I).
Let w = p + log(1 + exp(p)) o e.

Let 0 = (p, p).
Let f(w,8) = log g(w|0) — log P(w)P(D|w).
Calculate the gradient with respect to the mean

_ Of(w,0)  Of(w,0)
B = ow + o

A e

3)
6. Calculate the gradient with respect to the standard de-

viation parameter p

_ Of(w,0) € +8f(w,9).

A, = 4
P ow 1+ exp(—p) Op @
7. Update the variational parameters:
pp—al, 5)
p—p—al,. (6)

Note that the W term of the gradients for the mean and
standard deviation are shared and are exactly the gradients
found by the usual backpropagation algorithm on a neural
network. Thus, remarkably, to learn both the mean and the
standard deviation we must simply calculate the usual gra-
dients found by backpropagation, and then scale and shift
them as above.

3.3. Scale mixture prior

Having liberated our algorithm from the confines of Gaus-
sian priors and posteriors, we propose a simple scale mix-
ture prior combined with a diagonal Gaussian posterior.
The diagonal Gaussian posterior is largely free from nu-
merical issues, and two degrees of freedom per weight only
increases the number of parameters to optimise by a factor
of two, whilst giving each weight its own quantity of un-
certainty.

We pick a fixed-form prior and do not adjust its hyper-
parameters during training, instead picking the them by

cross-validation where possible. Empirically we found op-
timising the parameters of a prior P(w) (by taking deriva-
tives of (1)) to not be useful, and yield worse results.
Graves (2011) and Titsias and Lazaro-Gredilla (2014) pro-
pose closed form updates of the prior hyperparameters.
Changing the prior based upon the data that it is meant to
regularise is known as empirical Bayes and there is much
debate as to its validity (Gelman, 2008). A reason why it
fails for Bayes by Backprop is as follows: it can be eas-
ier to change the prior parameters (of which there are few)
than it is to change the posterior parameters (of which there
are many) and so very quickly the prior parameters try to
capture the empirical distribution of the weights at the be-
ginning of learning. Thus the prior learns to fit poor initial
parameters quickly, and makes the cost in (1) less willing
to move away from poor initial parameters. This can yield
slow convergence, introduce strange local minima and re-
sult in poor performance.

We propose using a scale mixture of two Gaussian densi-
ties as the prior. Each density is zero mean, but differing
variances:

P(w) = HWN(W”0,0’%) + (1 = mN(w;[0,03), (7)
J

where w; is the jth weight of the network, N (z|p, o?) is
the Gaussian density evaluated at  with mean y and vari-
ance o2 and o7 and o3 are the variances of the mixture
components. The first mixture component of the prior is
given a larger variance than the second, oy > o9, provid-
ing a heavier tail in the prior density than a plain Gaussian
prior. The second mixture component has a small variance
02 < 1 causing many of the weights to a priori tightly con-
centrate around zero. Our prior resembles a spike-and-slab
prior (Mitchell and Beauchamp, 1988; George and McCul-
loch, 1993; Chipman, 1996), where instead all the prior pa-
rameters are shared among all the weights. This makes the
prior more amenable to use during optimisation by stochas-
tic gradient descent and avoids the need for prior parameter
optimisation based upon training data.

3.4. Minibatches and KL re-weighting

As several authors have noted, the cost in (1) is amenable
to minibatch optimisation, often used with neural networks:
for each epoch of optimisation the training data D is ran-
domly split into a partition of M equally-sized subsets,
D1,Ds,...,Dyr. Each gradient is averaged over all ele-
ments in one of these minibatches; a trade-off between a
fully batched gradient descent and a fully stochastic gradi-
ent descent. Graves (2011) proposes minimising the mini-
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batch cost for minibatch i = 1,2,..., M:

FR(D,,0) = %KL lq(w]6) || P(w)]
— Eq(wlo) [log P(Di|w)]. (8)

This is equivalent to the cost in (1) since ), FR(D;,0) =
F(D, ). There are many ways to weight the complexity
cost relative to the likelihood cost on each minibatch. For
example, if minibatches are partitioned uniformly at ran-
dom, the KL cost can be distributed non-uniformly among
the minibatches at each epoch. Let 7 € [0,1]* and
Zij\i1 m; = 1, and define:

F(Di,0) = miKL[q(w]0) || P(w)]
— Ey(wio) [log P(Ds[w)]  (9)

Then ]EM[Zf\il FI(D;,0)] = F(D, 6) where E s denotes
an expectation over the random partitioning of minibatches.
In particular, we found the scheme 7; = 2215—:; to work
well: the first few minibatches are heavily influenced by
the complexity cost, whilst the later minibatches are largely
influenced by the data. At the beginning of learning this is
particularly useful as for the first few minibatches changes
in the weights due to the data are slight and as more data
are seen, data become more influential and the prior less
influential.

4. Contextual Bandits

Contextual bandits are simple reinforcement learning prob-
lems without persistent state (Li et al., 2010; Filippi et al.,
2010). At each step an agent is presented with a context
z and a choice of one of K possible actions a. Different
actions yield different unknown rewards r. The agent must
pick the action that yields the highest expected reward. The
context is assumed to be presented independent of any pre-
vious actions, rewards or contexts.

An agent builds a model of the distribution of the rewards
conditioned upon the action and the context: P(r|z,a, w).
It then uses this model to pick its action. Note, importantly,
that an agent does not know what reward it could have re-
ceived for an action that it did not pick, a difficulty often
known as “the absence of counterfactual”. As the agent’s
model P(r|x,a,w) is trained online, based upon the ac-
tions chosen, unless exploratory actions are taken, the agent
may perform suboptimally.

4.1. Thompson Sampling for Neural Networks

As in Section 2, P(r|x, a, w) can be modelled by a neural
network where w are the weights of the neural network.
However if this network is simply fit to observations and
the action with the highest expected reward taken at each

time, the agent can under-explore, as it may miss more re-
warding actions.'

Thompson sampling (Thompson, 1933) is a popular means
of picking an action that trades-off between exploitation
(picking the best known action) and exploration (picking
what might be a suboptimal arm to learn more). Thomp-
son sampling usually necessitates a Bayesian treatment of
the model parameters. At each step, Thompson sampling
draws a new set of parameters and then picks the action
relative to those parameters. This can be seen as a kind
of stochastic hypothesis testing: more probable parame-
ters are drawn more often and thus refuted or confirmed
the fastest. More concretely Thompson sampling proceeds
as follows:

1. Sample a new set of parameters for the model.

2. Pick the action with the highest expected reward ac-
cording to the sampled parameters.

3. Update the model. Go to 1.

There is an increasing literature concerning the efficacy and
justification of this means of exploration (Chapelle and Li,
2011; May et al., 2012; Kaufmann et al., 2012; Agrawal
and Goyal, 2012; 2013). Thompson sampling is easily
adapted to neural networks using the variational posterior
found in Section 3:

1. Sample weights from the variational posterior: w ~
q(w|0).

Receive the context x.

Pick the action a that minimises Ep(y|4,q,w)[7]
Receive reward r.

Update variational parameters 6 according to Sec-
tion 3. Go to 1.

nok W

Note that it is possible, as mentioned in Section 3.1, to de-
crease the variance of the gradient estimates, trading off for
reduced exploration, by using more than one Monte Carlo
sample, using the corresponding networks as an ensemble
and picking the action by minimising the average of the
expectations.

Initially the variational posterior will be close to the prior,
and actions will be picked uniformly. As the agent takes ac-
tions, the variational posterior will begin to converge, and
uncertainty on many parameters can decrease, and so ac-
tion selection will become more deterministic, focusing on
the high expected reward actions discovered so far. It is

! Interestingly, depending upon how w are initialised and the
mean of prior used during MAP inference, it is sometimes pos-
sible to obtain another heuristic for the exploration-exploitation
trade-off: optimism-under-uncertainty. We leave this for future
investigation.
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Table 1. Classification Error Rates on MNIST. % indicates result
used an ensemble of 5 networks.

5

5 Z

k!

= &
Method 2 |2 Test

Error

SGD, no regularisation (Simardetal, 2003)| 800 | 1.3m 1.6%
SGD, dropout (Hinton et al., 2012) ~1.3%
SGD, dropconnect (Wan et al., 2013) 800 | 1.3m| 1.2%"
SGD 400 | 500k| 1.83%

800 | 1.3m| 1.84%

1200| 2.4m| 1.88%
SGD, dropout 400 | 500k| 1.51%

800 | 1.3m| 1.33%

1200| 2.4m| 1.36%
Bayes by Backprop, Gaussian 400 | 500k| 1.82%

800 | 1.3m| 1.99%

1200| 2.4m| 2.04%
Bayes by Backprop, Scale mixture 400 | 500k| 1.36%

800 | 1.3m| 1.34%

1200 2.4m| 1.32%

known that variational methods under-estimate uncertainty
(Minka, 2001; 2005; Bishop, 2006) which could lead to
under-exploration and premature convergence in practice,
but we did not find this in practice.

5. Experiments

We present some empirical evaluation of the methods pro-
posed above: on MNIST classification, on a non-linear re-
gression task, and on a contextual bandits task.

5.1. Classification on MNIST

We trained networks of various sizes on the MNIST dig-
its dataset (LeCun and Cortes, 1998), consisting of 60,000
training and 10,000 testing pixel images of size 28 by 28.
Each image is labelled with its corresponding number (be-
tween zero and nine, inclusive). We preprocessed the pix-
els by dividing values by 126. Many methods have been
proposed to improve results on MNIST: generative pre-
training, convolutions, distortions, etc. Here we shall focus
on improving the performance of an ordinary feedforward
neural network without using any of these methods. We
used a network of two hidden layers of rectified linear units
(Nair and Hinton, 2010; Glorot et al., 2011), and a softmax
output layer with 10 units, one for each possible label.

According to Hinton et al. (2012), the best published feed-
forward neural network classification result on MNIST (ex-
cluding those using data set augmentation, convolutions,
etc.) is 1.6% (Simard et al., 2003), whilst dropout with
an L2 regulariser attains errors around 1.3%. Results from
Bayes by Backprop are shown in Table 1, for various sized

hd
o
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Bayes by Backprop

Iy
o
L

Dropout
Vanilla SGD

Test error (%)

=
N
L

0.84 T T T T 1
0 100 200 300 400 500 600
Epochs

Figure 2. Test error on MNIST as training progresses.

154

Algorithm
%‘ Bayes by Backprop
% Dropout
[a] .
5 Vanilla SGD

T T T T
-02 -01 00 0.1 0.2
Weight

Figure 3. Histogram of the trained weights of the neural network,
for Dropout, plain SGD, and samples from Bayes by Backprop.

networks, using either a Gaussian or Gaussian scale mix-
ture prior. Performance is comparable to that of dropout,
perhaps slightly better, as also see on Figure 2. Note that
we trained on 50,000 digits and used 10,000 digits as a val-
idation set, whilst Hinton et al. (2012) trained on 60,000
digits and did not use a validation set. We used the vali-
dation set to pick the best hyperparameters (learning rate,
number of gradients to average) and so we also repeated
this protocol for dropout and SGD (Stochastic Gradient De-
scent on the MLE objective in Section 2). We considered
learning rates of 1072, 10~* and 10~° with minibatches
of size 128. For Bayes by Backprop, we averaged over ei-
ther 1, 2, 5, or 10 samples and considered 7 € {1, 3,2},
—logoy € {0,1,2} and —logos € {6,7,8}.

Figure 2 shows the learning curves on the test set for Bayes
by Backprop, dropout and SGD on a network with two lay-
ers of 1200 rectified linear units. As can be seen, SGD
converges the quickest, initially obtaining a low test er-
ror and then overfitting. Bayes by Backprop and dropout
converge at similar rates (although each iteration of Bayes
by Backprop is more expensive than dropout — around two
times slower). Eventually Bayes by Backprop converges
on a better test error than dropout after 600 epochs.

Figure 3 shows density estimates of the weights. The Bayes
by Backprop weights are sampled from the variational pos-
terior, and the dropout weights are those used at test time.
Interestingly the regularised networks found by dropout
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and Bayes by Backprop have a greater range and with fewer
centred at zero than those found by SGD. Bayes by Back-
prop uses the greatest range of weights.

0.8
0.6
2
0.4
5]
[a}
0.2+
0.0+
1 1 1
-5.0 -25 0.0
Signal-to—Noise Ratio (dB)
1.00 -
0.75
'8
00.50 -
(8}

0.25 -

0.00 -

75 50 25 0.0
Signal-to—Noise Ratio (dB)

Figure 4. Density and CDF of the Signal-to-Noise ratio over all
weights in the network. The red line denotes the 75% cut-off.

In Table 2, we examine the effect of replacing the vari-
ational posterior on some of the weights with a constant
zero, so as to determine the level of redundancy in the
network found by Bayes by Backprop. We took a Bayes
by Backprop trained network with two layers of 1200
units? and ordered the weights by their signal-to-noise ra-
tio (|u4:]/0;). We removed the weights with the lowest sig-
nal to noise ratio. As can be seen in Table 2, even when
95% of the weights are removed the network still performs
well, with a significant drop in performance once 98% of
the weights have been removed.

In Figure 4 we examined the distribution of the signal-to-
noise relative to the cut-off in the network uses in Table 2.
The lower plot shows the cumulative distribution of signal-
to-noise ratio, whilst the top plot shows the density. From
the density plot we see there are two modalities of signal-
to-noise ratios, and from the CDF we see that the 75%
cut-off separates these two peaks. These two peaks coin-
cide with a drop in performance in Table 2 from 1.24%
to 1.29%, suggesting that the signal-to-noise heuristic is in
fact related to the test performance.

>We used a network from the end of training rather than pick-
ing a network with a low validation cost found during training,
hence the disparity with results in Table 1. The lowest test error
observed was 1.12%.

Table 2. Classification Errors after Weight pruning

Proportion removed | # Weights | Test Error
0% 2.4m 1.24%
50% 1.2m 1.24%
75% 600k 1.24%
95% 120k 1.29%
98% 48k 1.39%

It is interesting to contrast this weight removal approach
to obtaining a fast, smaller, sparse network for prediction
after training with the approach taken by distillation (Hin-
ton et al., 2014) which requires an extra stage of training
to obtain a compressed prediction model. As with distil-
lation, our method begins with an ensemble (one for each
possible assignment of the weights). However, unlike dis-
tillation, we can simply obtain a subset of this ensemble by
using the probabilistic properties of the weight distributions
learnt to gracefully prune the ensemble down into a smaller
network. Thus even though networks trained by Bayes by
Backprop may have twice as many weights, the number of
parameters that actually need to be stored at run time can be
far fewer. Graves (2011) also considered pruning weights
using the signal to noise ratio, but demonstrated results on
a network 20 times smaller and did not prune as high a
proportion of weights (at most 11%) whilst still maintain-
ing good test performance. The scale mixture prior used
by Bayes by Backprop encourages a broad spread of the
weights. Many of these weights can be successfully pruned
without impacting performance significantly.

5.2. Regression curves

We generated training data from the curve:
y=2+0.3sin(2n(z +¢€)) + 0.3sin(4dm(x +¢€)) + €

where € ~ A(0,0.02). Figure 5 shows two examples of
fitting a neural network to these data, minimising a condi-
tional Gaussian loss. Note that in the regions of the input
space where there are no data, the ordinary neural network
reduces the variance to zero and chooses to fit a particu-
lar function, even though there are many possible extrap-
olations of the training data. On the left, Bayesian model
averaging affects predictions: where there are no data, the
confidence intervals diverge, reflecting there being many
possible extrapolations. In this case Bayes by Backprop
prefers to be uncertain where there are no nearby data, as
opposed to a standard neural network which can be overly
confident.

5.3. Bandits on Mushroom Task

We take the UCI Mushrooms data set (Bache and Lichman,
2013), and cast it as a bandit task, similar to Guez (2015,
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Figure 5. Regression of noisy data with interquatile ranges. Black
crosses are training samples. Red lines are median predictions.
Blue/purple region is interquartile range. Left: Bayes by Back-
prop neural network, Right: standard neural network.
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Figure 6. Comparison of cumulative regret of various agents on
the mushroom bandit task, averaged over five runs. Lower is bet-
ter.

Chapter 6). Each mushroom has a set of features, which we
treat as the context for the bandit, and is labelled as edible
or poisonous. An agent can either eat or not eat a mush-
room. If an agent eats an edible mushroom, then it receives
areward of 5. If an agent eats a poisonous mushroom, then
with probability % it receives a reward of —35, otherwise
a reward of 5. If an agent elects not to eat a mushroom,
it receives a reward of 0. Thus an agent expects to receive
a reward of 5 for eating an edible reward, but an expected
reward of —15 for eating a poisonous mushroom.

Regret measures the difference between the reward achiev-
able by an oracle and the reward received by an agent. In
this case, an oracle will always receive a reward of 5 for an
edible mushroom, or 0 for a poisonous mushroom. We take
the cumulative sum of regret of several agents and show
them in Figure 6. Each agent uses a neural network with
two hidden layers of 100 rectified linear units. The input
to the network is a vector consisting of the mushroom fea-
tures (context) and a one of K encoding of the action. The
output of the network is a single scalar, representing the ex-
pected reward of the given action in the given context. For
Bayes by Backprop, we sampled the weights twice and av-
eraged two of these outputs to obtain the expected reward

for action selection. We kept the last 4096 reward, context
and action tuples in a buffer, and trained the networks us-
ing randomly drawn minibatches of size 64 for 64 training
steps (64 x 64 = 4096) per interaction with the Mushroom
bandit. A common heuristic for trading-off exploration vs.
exploitation is to follow an e-greedy policy: with proba-
bility € propose a uniformly random action, otherwise pick
the best action according to the neural network.

Figure 6 compares a Bayes by Backprop agent with three
e-greedy agents, for values of € of 0% (pure greedy), 1%,
and 5%. An e of 5% appears to over-explore, whereas a
purely greedy agent does poorly at the beginning, greed-
ily electing to eat nothing, but then does much better once
it has seen enough data. It seems that non-local function
approximation updates allow the greedy agent to explore,
as for the first 1, 000 steps, the agent eats nothing but after
approximately 1, 000 the greedy agent suddenly decides to
eat mushrooms. The Bayes by Backprop agent explores
from the beginning, both eating and ignoring mushrooms
and quickly converges on eating and non-eating with an al-
most perfect rate (hence the almost flat regret).

6. Discussion

We introduced a new algorithm for learning neural net-
works with uncertainty on the weights called Bayes by
Backprop. It optimises a well-defined objective function
to learn a distribution on the weights of a neural network.
The algorithm achieves good results in several domains.
When classifying MNIST digits, performance from Bayes
by Backprop is comparable to that of dropout. We demon-
strated on a simple non-linear regression problem that the
uncertainty introduced allows the network to make more
reasonable predictions about unseen data. Finally, for con-
textual bandits, we showed how Bayes by Backprop can
automatically learn how to trade-off exploration and ex-
ploitation. Since Bayes by Backprop simply uses gradient
updates, it can readily be scaled using multi-machine opti-
misation schemes such as asynchronous SGD (Dean et al.,
2012). Furthermore, all of the operations used are readily
implemented on a GPU.
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